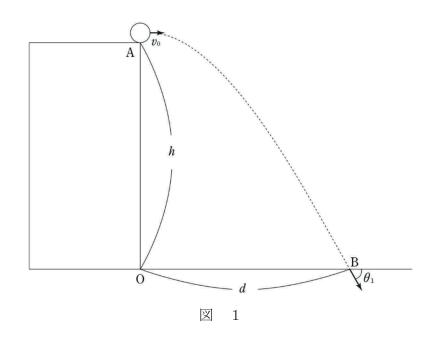
デジタルハリウッド大学 2020年度 一般入学試験 A 方式


物理 [60分]

【注意事項】

- 1. 試験監督の指示があるまでは、問題冊子は開かないこと。
- 2. 試験監督から指示があったら、解答用紙に氏名・受験番号を正確に記入し、受験番号マーク欄にも受験番号を正確にマークすること。
- 3. 試験開始の合図後、この問題冊子を開き、20ページ(白紙ページ含む)揃っているか確認すること。
- 4. 乱丁、落丁、印刷不鮮明などがある場合は、手を挙げて試験監督に知らせること。
- 5. 解答は、すべて別紙の解答用紙の解答欄にマークすること。
- 6. 試験開始から終了までの間は、試験教室から退出できません。
- 7. 不正行為を行った場合は、その時点で受験の中止と退室を指示され、同日受験したすべての科目の成績が原則無効となる。
- 8. 解答用紙は試験終了後、回収される。問題冊子は持ち帰っても良い。

第1問 次の文章を読み、下の問い(問1~6)に答えよ。 [1 ~ 6]

図1のように、高さhの台の右端から大きさの無視できる質量mの小球を水平右向きに速さ v_0 で空中へ発射し、水平でなめらかな床の上に落下させた。台の右端を通る鉛直線と床の交点を点O、台の右端を点A、小球の落下点を点B、小球が床に達するまでの時間を t_1 、OB 間の距離をd、床に衝突するときの小球の速度が床となす角を θ_1 、重力加速度の大きさをgとする。小球に働く空気抵抗は考えない。

問1 t_1 を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $t_1 = \boxed{1}$

- $2 \sqrt{gh}$
- $\sqrt{2gh}$

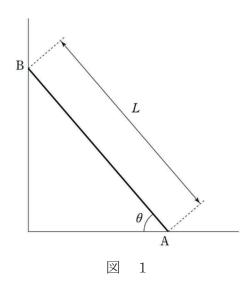
- $4 \sqrt{\frac{h}{2g}}$
- $\sqrt[3]{\frac{2h}{g}}$

- 問2 $d = \boxed{\mathbf{r}} \times t_1$ である。
 - ア に入れる式として正しいものを、次の①~⑥のうちから一つ選べ。 2
- ① $\frac{1}{2}g$ ② g ③ $\frac{1}{2}v_0$

- 問3 $\tan \theta_1$ を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $\tan \theta_1 = \boxed{3}$

- 問4 小球が床に衝突する直前の運動エネルギーをEとすると,
 - $E = \frac{1}{2} m v_0^2 + \boxed{1} \quad \text{\refthat{\sim}} \quad$
 - **イ** に入れる式として正しいものを,次の①~⑥のうちから一つ選べ。 **4**

 - ① $\frac{1}{2} mgt_1$ ② $\frac{1}{2} mg^2t_1^2$ ③ mgt_1


- (a) $mg^2t_1^2$ (b) $\frac{3}{2}mgt_1$ (c) $\frac{3}{2}mg^2t_1^2$

次に、最初の小球を取り除き、大きさの無視できる質量Mの小球を台の右端に静止させた。この小球には重力の他に一定の大きさ αMg (α は正の定数)の力が常に水平右向きに働くものとする。小球を静かに放したところ、小球は空中へ飛び出し、床の上に落下した。小球が床に達するまでの時間を t_2 、床に衝突するときの小球の速度が床となす角を θ_2 とする。

- 問5 小球の運動に関する記述として最も適当なものを、次の①~⑥のうちから一つ選べ。 5
 - ① 小球は直線軌道を描き、 $t_2 < t_1$ である。
 - ② 小球は直線軌道を描き、 $t_2 = t_1$ である。
 - ③ 小球は直線軌道を描き、 $t_2 > t_1$ である。
 - ④ 小球は放物線軌道を描き、 $t_2 < t_1$ である。
 - ⑤ 小球は放物線軌道を描き、 $t_2 = t_1$ である。
 - ⑥ 小球は放物線軌道を描き、 $t_2 > t_1$ である。
- 問 6 $\tan\theta_2$ を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $\tan\theta_2 = \boxed{6}$

第2問 次の文章を読み、下の問い(問1~6)に答えよ。 [7 ~ 12]

図1のように、長さL、質量Mの密度が一様ではない細い棒を、なめらかで鉛直な壁とあらい水平な床の間に立てかけた。棒と床の接点を点A、棒と壁の接点を点Bとし、棒の重心は点Aから棒に沿って距離xの位置にあるものとする。棒が床から受ける垂直抗力の大きさを N_A 、棒が壁から受ける垂直抗力の大きさを N_B 、棒と床の間の静止摩擦係数を μ 、棒と床がなす角e0、重力加速度の大きさをe2とする。以下では棒が滑り落ちる直前の状態を限界状態と呼ぶ。

棒が限界状態ではない状態で静止しているときについて考える。このときの棒が床から受ける静止摩擦力の大きさを F_A とする。

問1 N_A を表す式として正しいものを、次の①~⑥のうちから一つ選べ。

$$N_{\rm A} = \boxed{7}$$

- \bigcirc 0
- $\hat{2}$ $N_{\rm B}$
- \mathfrak{I} Mg

- 4 μMg
- \bigcirc $\mu N_{\rm B}$
- 6 $Mg \sin\theta$

問2 F_A を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $F_A = \boxed{8}$

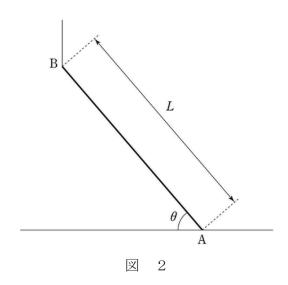
- $N_{\rm A}$
- $2 N_{\rm B}$
- 3 Mg

- (4) μN_A (5) μN_B (6) $(1+\mu)Mg$

問3 棒の重力の点A, 点Bのまわりの力のモーメントの大きさをそれぞれ τ_1 , τ_2 とすると,

$$\frac{\tau_1}{\tau_2} = \boxed{P}$$
 である。

 \mathbf{r} に入れる式として正しいものを、次の $\mathbf{0} \sim \mathbf{0}$ のうちから一つ選べ。 $\mathbf{9}$


- ① 1 ② $\sin\theta$ ③ $\cos\theta$

棒が限界状態のときを考える。

問4 このときの $\tan\theta$ を表す式として正しいものを、次の①~⑥のうちから一つ選べ。

$$tan\theta = \boxed{10}$$

図1の棒を壁に立てかけるかわりに、棒の左端に質量が無視できる糸を取りつけ、糸が鉛 直方向になるように糸を引っ張り、図2のように棒を静止させた。このときの糸の張力の大 きさをT、棒が床から受ける垂直抗力の大きさを N_A 、静止摩擦力の大きさを F_A とする。

問5 F_{A} 'を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 F_{A} ' = 11

- 3 Mg
- $4 \mu N_{\rm A}'$
- \bigcirc μMg \bigcirc \bigcirc $Mg \sin\theta$

問6 Tを表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $T = \boxed{12}$

第3問 次の文章を読み,下の問い(問1~5)に答えよ。 [13 ~ 17]

図1は、円筒を水平面上に固定したときの円筒の鉛直断面図であり、円筒面に沿って物体を運動させる。円筒の中心を点O、最下点を点A、最高点を点Bとする。円筒の内面と外面はともになめらかであり、円筒面は薄く、円筒の内面の半径と外面の半径はともにRである。重力加速度の大きさをgとする。すべての運動は図1の鉛直面内で行われる。

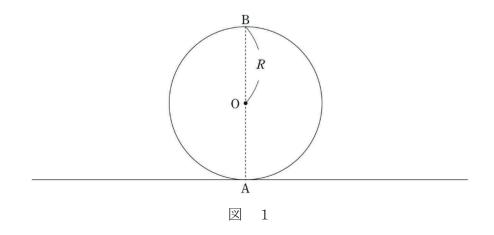
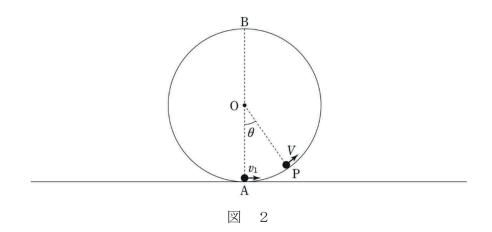



図 2 のように、質量 m の小物体 1 に点 Aで水平右向きの初速度 v_1 を与え、円筒の内面に沿って運動させた。小物体 1 が円周上の点 Pを通過するときの速さをV、加速度の大きさを a、 $\angle AOP$ を θ 、円筒の内面から受ける垂直抗力の大きさを N_P とする。

問1 Vを表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $V = \boxed{13}$

$$v_1^2 - 2gR (1 - \sin\theta)$$

①
$$\sqrt{v_1^2 - 2gR}$$
 ② $\sqrt{v_1^2 - 2gR(1 - \sin\theta)}$ ③ $\sqrt{v_1^2 - 2gR(1 - \cos\theta)}$

$$\int v_1^2 + 2gR (1 - \sin\theta)$$

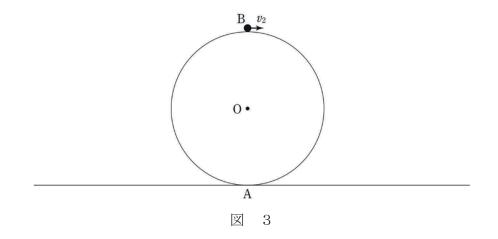
(a)
$$\sqrt{v_1^2 + 2gR}$$
 (b) $\sqrt{v_1^2 + 2gR (1 - \sin\theta)}$ (c) $\sqrt{v_1^2 + 2gR (1 - \cos\theta)}$

問2
$$N_{\rm P}=rac{mv_1^2}{R}+(\boxed{7}) imes mg$$
である。

ア に入れる式として正しいものを,次の①~⑥のうちから一つ選べ。 **14**

- ① $3 \sin \theta 2$ ② $3 \sin \theta 1$ ③ $3 \sin \theta + 2$

- (4) $3\cos\theta 2$ (5) $3\cos\theta 1$ (6) $3\cos\theta + 2$


問3 aを表す式として正しいものを、次の①~⑥のうちから一つ選べ。a = 15

- ① g ② $g \sin \theta$ ③ $g \cos \theta$ ④ $\frac{V^2}{R}$ ⑤ $\sqrt{\left(\frac{V^2}{R}\right)^2 + (g \sin \theta)^2}$ ⑥ $\sqrt{\left(\frac{V^2}{R}\right)^2 + (g \cos \theta)^2}$

問4 小物体1が円筒の内面から離れることなく円運動するための v_1 の大きさの最小値 を v_{\min} とすると、 v_{\min} を表す式として正しいものを、次の \bigcirc ~ \bigcirc のうちから一つ選べ。 $v_{\min} = | 16 |$

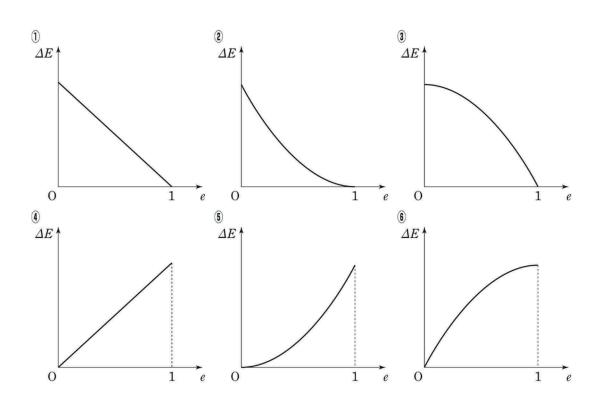
- ① $2\sqrt{gR}$ ② $\sqrt{5gR}$ ③ $\sqrt{6gR}$

図3のように、質量mの小物体2に点Bで水平右向きの初速度 v_2 を与え、円筒の外面に沿っ て運動させた。

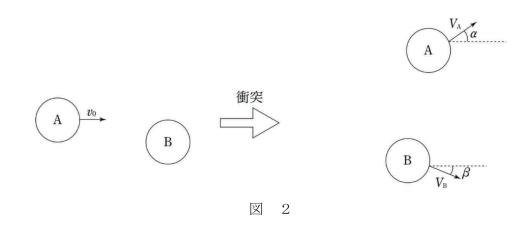
問5 小物体 2 に初速度を与えた直後に円筒の外面から離れないための v_2 の大きさの最大 値を v_{max} とすると、 v_{max} を表す式として正しいものを、次の①~⑥のうちから一つ選べ。 $v_{\rm max} = \mid 17 \mid$

第4問 次の文章を読み,下の問い(問1~5)に答えよ。[18 ~ 22]

図1に示すように、なめらかな水平面上を速さ v_0 で運動する質量mの小球Aが、静止している同じ質量mの小球Bに衝突した。衝突後の小球A、Bは、それぞれ速さ v_A 、 v_B で衝突前の小球Aと同じ向きに運動した。小球Aと小球Bの間の反発係数(はねかえり係数)をeとする。

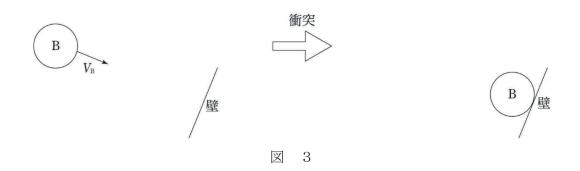


問1
$$v_{\mathrm{A}} =$$
 $m{7} imes v_{\mathrm{0}}$, $v_{\mathrm{B}} =$ $m{1} imes v_{\mathrm{0}}$ である。


$$m{7}$$
 , $m{4}$ に入れる式の組合せとして正しいものを、次の①~ $m{9}$ のうちから一つ選べ。 $m{18}$

	ア	1
1	<u>e</u> 2	<u>e</u> 2
2	<u>e</u> 2	<u>1-e</u> 2
3	<u>e</u> 2	<u>1+e</u> 2
4	<u>1-e</u> 2	<u>e</u> 2
5	<u>1-e</u> 2	<u>1-e</u> 2
6	<u>1-e</u> 2	1+e 2
7	1+e 2	<u>e</u> 2
8	1+e 2	<u>1-e</u> 2
9	1+e 2	1+e 2

問2 衝突により失われた運動エネルギーを ΔE とする。 ΔE を縦軸,反発係数 e を横軸として, ΔE と e の関係を表すグラフの概形として最も適当なものを,次の①~⑥のうちから一つ選べ。 19


次に、図2のように、衝突前の小球Aの軌道を少しずらして、最初と同じ速さ v_0 で小球Bに衝突させた。衝突後の小球A、Bは、それぞれ速さ V_A 、 V_B で運動した。衝突後の小球A、Bの速度の向きが衝突前の小球Aの速度の向きとなす角をそれぞれ α 、 β とする。

- 問3 $V_{\rm A}\cos\alpha + V_{\rm B}\cos\beta =$ ウ である。
 - **ウ** に入れる式として正しいものを、次の①~⑥のうちから一つ選べ。 20
 - 1 0
- $\hat{\mathbf{z}}$ \mathbf{v}_0
- $\Im v_0 \sin \alpha$

- \circ $v_0 \tan \alpha$
- $6 2v_0$

小球Aと小球Bの衝突後、しばらくして、図3のように小球Bは固定された鉛直な壁に衝突し、はねかえることなく、その場で静止した。

問4 小球Bが壁との衝突により受けた力積の大きさをIとすると、Iを表す式として正しいものを、次の①~⑥のうちから一つ選べ。I= 21

- ① 0 ② $\frac{1}{2} mV_{\rm B}^2$ ③ $mV_{\rm B}^2$
- $\textcircled{4} \quad \frac{1}{2} \, mV_{\rm B} \qquad \qquad \textcircled{5} \quad mV_{\rm B} \qquad \qquad \textcircled{6} \quad 2mV_{\rm B}$

小球 Aと小球 Bの衝突後,しばらくして小球 Aは質量 $\frac{3}{4}m$ の物体 Cと質量 $\frac{1}{4}m$ の物体 Dに 分裂した。分裂後の物体 C, Dは分裂前の小球 Aと同じ向きに運動し,物体 Cの速さは物体 Dの速さより大きい。分裂後の物体 Cの速さを V_C ,物体 Cの物体 Dに対する相対速度の大きさを Uとする。

問5
$$V_{\rm C} = V_{\rm A} + \boxed{\mathtt{I}} \times u$$
である。

- エ に入れる数として正しいものを、次の①~⑥のうちから一つ選べ。 22